宇宙到底有多大 宇宙的外面又是什么呢

市井冷眼 3个月前 已收到4个回答 举报

忍痛祝福你 1星

共回答了108个问题采纳率:96.1% 评论

宇宙是一个无限系统。

15小时前

7

宁波皇子 4星

共回答了48个问题 评论

宇宙有多大,只能说以目前的科技水平,还无法探测出整个宇宙的范围。

目前根据观测结果,我们可以判定的是可观测宇宙的范围是直径约930亿光年大小。什么叫可观测宇宙呢?这是根据宇宙空间的一些性质决定的一个界限。

我们发现宇宙空间是一直处于膨胀中的,而这个膨胀的系数,也叫哈勃常数,大约是每增加326万光年,膨胀的速度增加67千米/秒。因此,根据这个常数,我们可以计算出,距离我们约465亿光年远的位置上,空间膨胀的速度就以达到了光速。而宇宙中最快的速度也就是光速了,那么也就是说超过这个距离的天体,他们发出的光永远也传不到我们这里,因为他们受空间膨胀的影响,远离我们的速度已经超过了光速,所以,我们永远也看不到他们了。

这样就造成了一个界限,我们只能观测到这个界限以内的天体,超过这个界限的天体,我们是观测不到的,这就是可观测宇宙。

我们现在可以肯定的是,在可观测宇宙的外面依然是与我们看到的一样的宇宙,但是无法确定的是,这个完整的宇宙究竟有多大,有没有边界。目前有很多的理论推断出整个宇宙的大小,但没有一种理论可以找到确实的证据。

因此,目前我们还无法推测出完整宇宙的大小来。而至于说宇宙的外面,那更是一个无法判断的问题了。

13小时前

3

谅我贪念 1星

共回答了129个问题 评论

宇宙到底有多大?

宇宙到底有多小?

宇宙到底有多少个维度?

人类贫瘠的想象力似乎很难理解,那就让我们用宇宙中跑得最快的东西——光来衡量吧。

光在真空中的速度为每秒30万公里。这个速度如此之快,以至于近代的学者误以为光速是无限大的——打开灯的一瞬间,整个房间不就被照亮了吗?

实际上,光照亮方圆几米的一小块地方,大约需要一亿分之一秒。在你读这篇文章的几分钟内,光子就飞了1000万公里,相当于绕地球250圈!

人的视细胞感受到的每一个光子,都是8分钟之前从太阳表面出发的,跨越了1亿5000万公里的漫长距离,才进入你的视网膜。冥王星和太阳相隔75亿公里,暗淡的阳光到达这颗荒芜的矮行星需要7小时!

离开太阳系之后,我们更能体会到宇宙的速度极限——光速在几乎无穷尽的空间面前,是多么微不足道:

光到达距离太阳最近的恒星——半人马座的比邻星需要4年;

横穿整个银河系盘面,需要10万年;

到达肉眼就能看见的仙女座大星云需要250万年;

科学家能观测到的最远星系位于130亿光年之外

宇宙大约有138亿年的历史。诞生才8亿年的婴儿宇宙中,一颗恒星在核聚变的大火中诞生,一个光子挣脱引力的束缚,开始了一段漫长到绝望的旅程。

它出发的时候,周围还没什么星光,宇宙还处于“黑暗时代”,大片的气体云正在积聚能量,准备孕育新的原恒星。

当这个光子走完2/3的旅程时,在银河系的猎户支臂上,一颗普普通通的恒星诞生了,在它周围从内到外排布着8颗行星。

光子对这一切浑然不知,又继续飞行了几亿年。在这些行星之中,第3颗岩石行星的原始海洋在闪电和暴雨中形成了生命的最基本单位。

光子忽然觉得,这段漫长乏味的旅程有了新的意义,自己和那颗陌生的行星之间似乎被一条神秘的细线紧紧相连。

光子的脚步当然不会稍作停留。无数生命在岩石行星上兴起,繁衍,衰亡,化为积压在地层深处的化石。蜥脚类恐龙的庞大身躯被流沙覆盖,一只古猿小心翼翼地直立起来,眺望远方的地平线。

光子剩余的行程屈指可数了。这种直立行走的生物每天除了打打闹闹就是胡思乱想,它们把脚下的大地取名“地球”,还把散播光和热的母星称为“太阳”。

光子冷笑了一声。在地球上,一个叫伽利略的人把两个镜片安在纸筒里,造出一个被称为“望远镜”的东西,还把它对准了夜空中的星星!

光子心里一紧,硬着头皮继续前进。地球上这群古怪的生物吃饱了还会鼓捣些稀奇的玩意儿,比如把一根“铁棍”弄出老大的火光和浓烟,发射到高空,还把一些闪亮的“玻璃球”送到地球的轨道上绕来绕去。

光子离地球越来越近了,远远看去不起眼的小点急速扩大,最终变成一颗硕大的蔚蓝星球。光子急急忙忙地想从它的身边溜过去,没想到正好撞到一架漂浮在太空的望远镜的镜片上!如果此时光子能够听到地面科学家的兴奋交谈,它就会知道,终结这段130亿年漫长旅程的,叫“哈勃太空望远镜”。

即使这个光子没有被哈勃望远镜捕获,它也永远无法走到宇宙的尽头。因为从它出发的那一刻起,宇宙就一直在膨胀。

从人类的角度看,一切映入眼帘的星光最多只有138亿年的历史——这被称为可观测宇宙,但因为宇宙空间本身的膨胀超过光速,可观测宇宙的半径实际上为460亿光年。至于460亿光年外是怎样一番景象,我们永远也无法看到了!!!

我们看不到的宇宙有多大?

只有靠想象!

我们人类生活在地球,地球又生活在宇宙这个大家庭里,古时候有智者常常抬头看天上的星星,天外的世界有多大?随着历史的前进,到了近代,随着天文望远镜的出现,人们终于可以观察宇宙了,人们迫世想要知道:宇宙到底有多大?

但当人们用天文望远镜看宇宙星空时,才发现自己是多么渺少,也深深为自己的这个问题感到迷惑,宇宙到底有多大?真的无边无际吗?初期的天文望远镜观察距离是有限的,但随着天文望远镜的越来越先进,后来哈勃望远镜发射到太空中,人们对宇宙再次进行深空观察,这次看得更远,更表,这个时候人类更加傻眼了,宇宙好大啊,如此远的距离还没有看到宇宙的尽头。宇宙到底有多大呢?

在一次研讨会上,有人问科学家,我们的这个宇宙到底有多大?科学家沉默了一会就对他说,宇宙的大小,我们不能用大来衡量它,顺着这个思路想下去,当你觉得害怕,觉得自己渺小的时候,你就知道宇宙有多大了。

地球对于人类来说,好大啊,要是步行旅行,一生也走不完地球。我们站在海岸边,看着无边无际的大海,感慨地球太大了。这时人类感觉自己面对整个地球是多么的渺小。

要是把地球放在太阳系中,地球也就不算大了,太阳系的八大行星里,都比地球大,而且太阳系还是很多的卫星,数以亿计的其它小型天体,太阳系边缘还有一个奥尔特云的地带,这里面的小行星更是不计其数。

如果你觉得太阳系够大了,但是太阳系在银河系里,只是一粒尘埃或一粒沙子,沙子有多小,太阳系就有多小,银河系的直径16万光年,而太阳系只有1光年,差距何其之大。银河系中像太阳这里的恒星有2000多忆颗,而且太阳还是其中比较小的那一类。

银河系你是不觉得很大了,但在银河系外边还有一个叫室女座的超星系团,它里面比银河系大的星系就有100多个,光在里面走一个直线都要2亿年,里面的恒星数量达100亿万颗。

当你认为这个室女座的超星系团很大的时候,它其实只是拉尼亚凯亚超超星系团的一根小手指罢了,这个叫做拉尼亚凯亚超超星系团的覆盖范围竟然达到了5.2亿光年之遥。这个超超星系团里边的恒星已经是无法计数了,即或这样,它还不是宇宙的边缘,而仅仅是宇宙里边的一根头发丝而已!

当你看完以上的思路,你会不会被吓傻了?宇宙之大远超我们的想象,这还只是我们目前天文望远镜可观测到的范围,而能观测到的范围其实只是宇宙的冰山一角。这个时候我们才深深感到,地球的渺小,人类在这个宇宙中最多算一个细胞。

如此浩瀚的宇宙,你说会不会有外星人呢?如果说没有,估计谁也不会信,外星人在宇宙中应该是普遍的存在,即使按亿万分之一来算,那有外星人的星球也多得数不过来,这里面文明等级有高有低,有的可能处在原始社会,有的可能已经发展了几十亿元,这样的超级文明科技发展到何种程度,真是我们不敢想的。人类的文明诞生才不过不到1万年,与宇宙中的那些高级文明差距实在是太大了,怪不得霍金经常警告人类,不要试图和外星人接触,否则带来的可能就是灾难。

宇宙究竟有多大?宇宙最后的归宿是什么?其实和人类也是一样!

随着科技的进步,地球上的地方基本都被探索遍了,人类也是将目光放到了太空中。亚里士多德曾经说过:你知道的越多,不知道的也越多。确实,随着人们对太空的慢慢了解,也发现不知道的东西也越来越多了,例如宇宙到底有多大?宇宙的结局是什么?

可能有的人会说了,知道那么多干什么?活好当下就行了,这里小编就要提出了反对意见了。最开始的人类是进化而来的,直到现在,人类也还是在进化当中,求知欲就是最好的证据,知道的越多,智力进化的也就多,后代也就会越来越聪明!

那么宇宙到底有多大呢?科学家们根据已有的数据测算出宇宙的直径可达到920亿光年,而这个直径的数字每分每秒都在增加而且速度正在增加,当你们看到这篇文章的时候,宇宙又变大了一点哦!这是由科学家布莱恩·施密特提出的,并因此获得了2011年的诺贝尔物理学奖!

但是这个速度增加并不是无上限的,当宇宙膨胀到一定的程度,就是当宇宙能量密度小于临界密度时,宇宙的增长速度就会变慢,各种星系气体就会慢慢被恒星消耗殆尽,而恒星也因此而演变成白矮星或者中子星,直到互相碰撞形成黑洞,最后整个宇宙重新发生大爆炸,一切有回归到初始状态,继续膨胀、爆炸的路线!

循环,就是约束世间万物的唯一准则,人是这样,宇宙也不例外!

从小到大!

从大到小!

从生到死!

从死到生!

循环反复!

生生死死!

永远存在!

想象一下我们的宇宙:

0、真空宇宙——零维时空

1、微观宇宙——宇宙奇点时空

2、射线宇宙——一维时空

3、平面宇宙——二维时空

4、立体宇宙——三维时空

5、曲面宇宙——四维时空

6、黑洞宇宙——五维时空

7、白洞宇宙——六维时空

8、七维时空

9、八维时空

10、九维时空

11、十维时空

12、十一维时空

13、十二维时空

14、十六维时空

15、二十五维时空

16、三十六维时空

17、四十九维时空

18、六十四维时空

19、八十一维时空

20、平行宇宙时空

21、反物质宇宙时空

22、大宇宙时空

23、超大宇宙时空

24、……………………

我们所看到的世界,是由长、宽、高组成的三维空间,加入时间之后,就变成了四维,爱因斯坦告诉我们说,一维的时间和三维的空间组成不可分割的时空整体,而宇宙的时空是弯曲的。四维空间我们都可以理解,但是时空弯曲使我们的想象力受到挑战,这并不是能直接观察出来的。但是物理学家就是喜欢挑战,他们不断的引入新的维度,五维、六维、七维、八维、十维……等等,难道后面还有?小编我已经很难想象了,让我们从零维开始,发挥我们想象力来挑战思维吧。

1. 零维

零维可以理解为一个没有长宽高的点。有人肯定会质疑,再小的点,在显微镜下都是有长度的,零维空间是否根本就不存在?的确,零维根本就不存在的,但接近零维的空间就在我们身边。现在物理学家给我们展现微观世界的许多古怪现象,其中包括一种叫“零维半导体”的结构,也就是通常物理学上的“量子点”。量子点虽然十分的小,但毕竟还是有体积的,可以让一个电子刚好进入量子点中。量子点像是陷阱,当电子进入之后,它们就不能移动分毫的距离,完全被限制住了。而且即使我们从外界向一个量子点注入能量,不论能量大小都不能改变电子的状态,而且进入多少能量就会吐出多少。这种古怪的特性物理学家视为零维结构,量子点可以通过电子和光子的转换储存传递信号,用在未来的量子计算机或者更高领域。

2. 一维

一维是一条直线,牛顿的定律在一维空间中可以起作用,一维空间的物体可以前后运动。在量子学家看来,一维空间是真实存在的。比如,他们会制造一个十分狭窄的隧道只能让电子前后运行。通常两个电子相遇,电荷因同性相斥的原理会给对方让路。可是如果在一维空间隧道中,只能前后运动,那么两个电子就会相互发生作用而产生一种奇怪的现象。一个电子具有电荷,而另一个电子是自旋状态。一维空间的古怪现象量子学家已经司空见惯了,科学家目前正在研究一维碳纳米管,准备以它作为导体或半导体材料,用来制未来的量子计算机。

3. 1.5维

不要以为空间维度就一定是整数, 比如1.5维就挑战了我们惯性思维。数学家早就知道,只要观测的够仔细,云就不是团状的,山峰也不是锥状的,海岸线也不是弧形的。它们细微的轮廓比纯粹的直线占有了更多的空间,这样的轮廓介于一维和二维之间,我们算作1.5维。

4. 二维

二维在数学上是两条线交叉的平面,但是在物理学中也能实现应用。2004年,科学家首次在实验室产出“二维物质”,只有碳原子后的平板,类似于人们熟悉的石墨。当我们把电子用强大的磁场限制在二维层面的半导体材料中,并冷却到绝对零度的1/3时,人们认为不可分割的电子就会破裂成多个粒子,每一个粒子都会拥有电子的部分电荷。这些粒子被称为“任意子”。总之,在二维的平面空间,从新型药物到平行宇宙等等事物都会成为可能,等待人类未来的突破和发现。

5. 三维

我们所生活的世界是在三维空间中,根据弦理论,空间可以从零维到十维的任意模样,这让物理学家很困惑,既然各种可能的维度都存在,为什么我们生活在三维的宇宙中,这该如何解释呢?2005年,美国物理学家在计算计算发起“维度战争”,他们用计算机模拟了不同的维度空间,然后相互碰撞彼此产生作用,最后经过争斗,三维宇宙和七维宇宙最后幸存了下来,不过这并不能作为我们生活在三维空间的证明。

6. 四维

相对论中提到时间和空间融合成为一个整体——时空。但是这是两个不同的维度,我们可以在三维空间任意方向旅行,但是在时间维度中只有一个方向。为什么会这样呢?

相信大家都知道光也是有速度的,我们所看到的太阳是8分钟前的太阳。根据相对论,光速在真空中只能无限接近,无法超越。所以物理学家认为,正是由于光速的限制,让时间这个维度变的和三维空间不同。如果可以超越光速,很可能时间就会停止或者倒流。

7. 五维

我们了解了拥有时间的四维,在这个基础上,1919年,德国的科学家卡鲁扎寄给爱因斯坦一篇论文。他认为四维时空增加一个第五维,引力和电磁力就有可能统一成一种力。后来到了1999年,美国科学家发现,如果真的有第五维,就可以解释一个令人烦恼的谜团,既为什么引力比自然界的其他力要弱。根据五维时空模型,四维时空处于一个空间无限大负曲率的五维空间上,其中一部分引力泄露在四维时空膜上,处于四维时空的我们就发现了引力。同时,加拿大科学家提出一个石破天惊的观点,认为五维时空曾经存在,后来破裂成两部分,一部分是我们的四维时空,另一部分是我们世界所有东西的质量!这个理论解决了为什么万物都有质量的难题,而且还解释了宇宙开端前的奇点。根据大爆炸理论,无限大的温度和密度,所有物理理论都失效了。

打个比方,生活在二维空间的生物永远想不到一个金属点为什么会有极大的质量。但是对于三维空间的生物,那只是扎在一张纸上的针而已。所以,我们不能理解奇点的无限密度和大爆炸的超光速膨胀,但是对五维时空的生物来说,这并没有什么奇怪的。

8. 十一维

1995年,美国科学家提出一种叫做M论的理论统一了各种弦理论。在M论中,宇宙是十一维的,只是其中的7个维度空间蜷缩到了我们观察不到的地步。甚至还有一种弦理论认为,宇宙有多大26个维度!

我们没有提到七维、八维、久维或者3.5维之类的宇宙,是因为物理学家无法设计出那样维度的时空,它们违背了物理学的原理。如今物理学分为两类,一派认为宇宙是固定的维度,就是我们所生活的真实空间结构。另一派认为,存在很多不同维度的时空宇宙,我们只是恰好生活在四维时空中。

你们想象一下你们的宇宙有多大?

小编相信后者,因为我们受限于这个时空,所以我们感觉在宇宙中似乎没有邻居。但是未来我们很有可能打开另一个维度的时空,那时或许会发现一个更大维度的宇宙!

11小时前

18

我不會原諒 1星

共回答了161个问题 评论

展开全部

这个比较复杂,涉及爱因斯坦的相对论,爱因斯坦曾提出宇宙有限而无边的理论,简单说就是宇宙相对我们地球来说有界限但却找不到它的边际。当代科技发现了宇宙的红移现象,及行星和星云的能量在朝远离宇宙中心的方向扩散,证明宇宙是在膨胀的。至于宇宙大小是有限的那么宇宙外面是什么这个问题不能简单地从空间的角度看,因为宇宙学很大程度上涉及到时间,及时空坐标系,而不是像我们现在地球上这样看 物体的膨胀单单看空间体积就可以了(因为我们的速度相比较光速是可以忽略不计的)。

此外宇宙学的很多理论是得不到证明的,比如即使现在证明了宇宙是有限的,我们也不可能飞到宇宙的边际去证明。这也就是施蒂芬霍金——当代最伟大的宇宙学家始终不能获得诺贝尔奖的原因。

针对YLouis的回答的补充:

1917年,爱因斯坦发表他的第一篇宇宙论文《根据广义相对论对宇宙学所作的考察》。象他多次以一篇论文开创一个领域一样,这篇论文宣告了相对论诞生。虽然时间已经过去六十多年了,但是,这篇论文所引进的许多观念至今仍富有生命力。在探索宇宙中,爱因斯坦首先指出无限宇宙与牛顿理论二者这间存在着难以克服的内在矛盾。在原则上,根据牛顿力学不能建立无限宇宙这一物理体系的动力学。从牛顿理论和无限宇宙这两点出发,根本得不到一个自洽的宇宙模型。因此,必然是:或者修改牛顿理论,或者修改无限空间观念,或者对二者都加以修改。爱因斯坦放弃了传统的宇宙空间三维欧几里得几何的无限性。他根据广义相对论建立了静态有限无边的自洽的动力学宇宙模型。在这个模型中,宇宙就其空间广延来说是一个闭合的连续区。这个连续区的体积是有限的,但它是一个弯曲的封闭体,因而是没有边界的。

这里我不过说了通俗易懂点:)。

红移确实和“有限无边”理论是两码事。

一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。

光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。

红移实际上是证明史蒂芬霍金的宇宙爆炸论的有利证据。即星体的能量在朝远离中心的方向扩散。

至于史蒂芬霍金为什么不能获得诺贝尔奖,我也想说明一下史蒂芬霍金的理论已经获得大多数科学家的认可,他本人也被公认为目前最伟大的理论物理学家,注意是理论物理学家。

因为诺贝尔奖的获奖项目必须有严密的理论并且有实际成功的实验予以证明。无论是物理学奖、化学奖、生物学奖 、以至经济学奖都是如此。为证明史蒂芬霍金的宇宙爆炸理论,我们不可能,也没有科技飞到宇宙的中心,实地测量那里的能量谱线,又飞到宇宙的边际,测量红移谱线,进行比对论证。这也是史蒂芬霍金一直不能得到诺贝尔奖的根本原因。

再补充:

在“有限无边”的说明中,我似乎没有提到所谓的中心一词……

至于宇宙中心,可能我应该解释一下,这实际指的是宇宙最初大爆炸的起源地。宇宙爆炸模型通俗讲就是宇宙的形成起源于一次大爆炸,而爆炸源地、也就是这里所指的宇宙中心,那里的物质密度非常的高。而宇宙的膨胀就是爆炸形成的各类星体向爆炸源的相反方向远离。目前我们是通过红移现象观察到的。这个解释与“无论在宇宙中的哪一点上,看到的周围的星体都是有红移运动的”是一致的。因为所有的星体都是在向远离中心的相反方向移动,只不过他们的红移不同罢了。

另外,简单学过相对论的都知道,如果物体的运动速度接近光速级别,那么它的空间尺寸会变小。举个例子,假设一把尺,以接近光速的速度掷出,那我们看道运动中尺的长度要比静止时短。所以在宇宙空间的讨论时,应该要考虑时间的坐标。

至于史蒂芬霍金不能获得诺贝尔奖的原因,大家各有各的想法,在此不过交流,没有必要强求同一。

或许是我的表达能力不够好,确实,宇宙就是那次爆炸形成的。这里所谓的中心,其实是指宇宙目前质量密度相对最大的地方,有点像核心区域的意思。总所周知 ,宇宙物质的分布是不均匀的。就好像太阳系,以太阳为中心旋转,而太阳系又位于银河系的边缘,围绕银河系旋转一样,中心的物质质量和密度是最大的。

至于宇宙空间的讨论,应该还是要考虑时间的因素。很简单,我们是站在地球的角度在讨论宇宙行星等的运动。好比上面提到的“各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去”。既然有速度,有红移谱线就一定有时间这个参量。速度是单位时间物体通过的距离,谱线能量计算涉及频率,而频率正是周期的倒数。这都涉及时间的参量。

7小时前

9
可能相似的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 service@wdace.com