氦闪原理

完美刘忻 2个月前 已收到2个回答 举报

擺錯姿势 4星

共回答了462个问题采纳率:99.2% 评论

氦闪是一种剧烈的天体活动,当恒星内部氢元素消耗完毕时,就会发生氦闪这种现象。

科学研究显示,在恒星的主序星末期阶段的时候,就会发生“氦闪”这种剧烈的天体活动,只要是恒星,都会发生氦闪,太阳也不例外。 

太阳每天的燃烧损失很大,根据万有引力定律,地球轨道应可能会越来越远,太阳的质量非常大;原材料非常之多;而且,核聚变反应区域很小;同时在太阳引力和磁场的共同作用下,太阳内部的能量以一种较为稳定的方式向外释放。 根据牛顿的万有引力定律我们可以很清楚的了解到。单论一个物体而言,他的引力与质量的的关系是称正比的,和它们之间的距离的平方是成反比的关系的,太阳随着时间的推移,质量有也会因不断燃烧而下降,对地球的吸引力也会逐渐降低。

太阳无时无刻都在进行着核聚变的反应,所谓核聚变反应就是就是把两个质量较轻的原子核结合在,由此来组成一个质量相对比较重的核,在这个变化阶段中,两个原子核组成一个核的过程中会把一部分质量以能量的方式释放出来。在宇宙之中,所有的恒星自始至终都在进行着这种反应过程。当氢元素快要燃烧完之后,就会为“氦闪”这种现象的发生埋下一定的伏笔。

氢弹爆炸几乎在一瞬间就完成结束了,与此形成鲜明对比的是,在太阳内部进行的核聚变反应所需要的时间就非常长,在太阳内部进行的核聚变的反应到目前为止进行了46亿年的时间,而且在以后的时间里还会持续稳定的进行核聚变,长达60亿年之久,这实在是令人难以想象,在快到60年的时候,也就意味着将要发生发生“氦闪”这种活动了。

1小时前

33

男神大妈 2星

共回答了93个问题 评论

氦闪发生在0.8太阳质量(M☉)至2.0M☉的低质量恒星核心,在红巨星阶段,是非常短暂的失控热核聚变,有大量的氦经由两次电离过程成为碳(预测太阳在离开主序带12亿年后会发生)。许多罕见的失控氦融合过程也可以在白矮星吸积的表面上进行。由于这些低质量恒星在核心的氢耗尽时,还无法进行氦融合反应来抵抗引力的作用,最终会因为氦是以量子力学的简并状态压力与引力平衡,而不是以热压力阻挡引力坍缩。这种氦在核心累积到一定的比例,便会进行很激烈的氦融合(燃烧)。这一挤压的过程导致核心的温度和密度增加,最后当核心的温度达到1亿K时,会以惊人的速率扩大与反抗重力,并使温度下降(在主序带阶段因为有太多的氢,所以不会发生)。

但简并物质的基本特质是温度变化不会影响体积,因此也不受流体静力平衡的通过融合率的规则限制,非常高的密度加快了融合速率,导致失控的核反应,在持续几分内释放出相当于整个银河的能量。这纯粹是以天文物理的模型来描述,因为正常的低质量恒星,能量会被外层的大气层吸收而未能发现与观察到。这个过程结束时,物质被加热到热压力再度成为主导,因此物质会膨胀和冷却。据估计,核心的质量大约40%是电子简并氦,6%的核心转换成碳。

21小时前

12
可能相似的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 service@wdace.com