tanx的原函数是什么

溫柔的眼 2个月前 已收到1个回答 举报

迷途不知 1星

共回答了173个问题采纳率:94.1% 评论

tanx的原函数是-ln|cosx|+C。

∫tanxdx

=∫sinx/cosx dx

=∫1/cosx d(-cosx)

因为∫sinxdx=-cosx(sinx的不定积分)

所以sinxdx=d(-cosx)

=-∫1/cosx d(cosx)(换元积分法)

令u=cosx,du=d(cosx)

=-∫1/u du=-ln|u|+C

=-ln|cosx|+C

原函数存在定理

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。

6小时前

23
可能相似的问题

猜你喜欢的问题

热门问题推荐

Copyright © 2024 微短问答 All rights reserved. 粤ICP备2021119249号 站务邮箱 service@wdace.com